

Unlocking the potential of advanced high voltage pulse comminution

Frank Shi, Kym Runge, Christian Antonio

COB Presentation Day on 5 November 2019

HVP research at the SMI-JKMRC

- HVP (High Voltage Pulse) as an alternative comminution technology
 - Short pulsed energy lightning
 - HVP applied to the mineral industry since 1970s
 - Better mineral liberation, but excessive energy consumption
- SMI-JKMRC started HVP research in 2007
 - Initial funding provided by ARC (AMSRI, LIEF)
 - Research sponsored by various mining companies
 - 7 HDR students (4 graduated)
 - Two HVP facilities installed
 - >20 papers published

Lightning energy

'Thunder is good,thunder is impressive; but it is lightning that does the work.'

— Mark Twain (1835-1910)

Improving ore processability by HVP

- HVP selective breakage
 - Ore pre-concentration
 - Waste rejection
- HVP selective weakening
 - Cracks/micro-cracks generation in mineralised particles
 - Reduced comminution energy consumption
- HVP preferential liberation
 - Hybrid processing method
 - Improved valuable mineral liberation and recovery

Potential to <u>TREAT & UNLOCK</u> Complex Orebodies!

Example: SAG mill pebble treatment

Product	Ecs (kWh/t)	Yield (wt%)	Grade (Cu%)	Distr. (Cu%)
Broken	2.5	73.1	0.276	91.5
Unbroken		26.9	0.07	8.5
Total		100.0	0.221	100.0
Before treatment, 0.22 Cu%	Broken, 0.28 Cu%		Unbroken, 0.07 Cu%	

CRICOS code 00025B

HVP pre-concentration technology

(Huang et al., 2018)

• Potential to discard 31% of the mass whilst losing only 10% of gold recovery.

CRICOS code 00025B

HVP pre-weakening effect

- HVP damages the structure of mineralised particle
 - With 1-3 kWh/t
 - Detected by X-ray tomography & mercury porosimetry
 - Cracks/microcracks on the mineralised particle
- Pre-weakened fragments
 - Axb increases from 31 to 84 (easier to break)
 - Simulations indicate \$19M/a saving in a 2000 t/h operation.

Mineralised particle (Huang et al., 2019)

Coarse particle liberation and recovery

- HVP + mechanical grinding hybrid treatment
- Coarse liberation >106 mm
- Improved grade and recovery in flotation

(Parker et al., 2015)

Potential applications

- Waste rejection
 - Productivity
 - Haulage costs
 - Cracks/microcracks on the mineralised particle
- Selective processing routes based on grade
 - Energy saving
 - Improved grade and recovery
- Ore upgrade
 - Viable orebody cut-off grade
- SAG mill pebble treatment
- SAG feed treatment

"A potential Game-Changer!"

CEEC 2017 Medal Selection Committee

Gaps for industrial uptake

HVP parameters

- The effects of HVP parameters on various HVP applications
- HVP generator system
 - HVP generation, power, efficiency, service life, insulation
- Scale-up
 - From batch lab testing to a small scale continuous system
- Circuit options
 - New opportunities for mining and processing circuit design
- Ore amenability
 - Variation in ore response to HVP treatment; Ore amenability characterisation.

Flexible HVP testing facility

- Newcrest Mining / UQ (SMI-JKMRC) sponsored facility
- Bespoke HVP unit from HUST
- Highly configurable & upgradeable
- HV: pulse transformer generator

	Specification
Throughput	Ability for batch and continuous processing
Energy Efficiency	Ability to change different parameters that can influence energy efficiency i.e. pulse rising time
Processing Medium	Possibility to process in air or minimal water by changing process parameters

HVP Collaborative Research Program

Conclusion

Emerging opportunities

- HVP selective breakage combined with size-based separation for ore preconcentration and waste rejection
- HVP selective weakening for reduced comminution energy consumption
- Hybrid HVP liberation for improved metal recovery

Unlocking the HVP potential

- Collaborative HVP research program
- Pathways for industrial uptake
- New technology to <u>TREAT & UNLOCK</u> complex orebodies for the mining industry