

Applications of geometallurgy for waste characterisation and management across the mining value chain

Dr Anita Parbhakar-Fox

Senior Research Fellow

WH Bryan Mining and Geology Research Centre, SMI, UQ

What is 'geometallurgy'?

What is 'geometallurgy'?

 Through an integrated approach geometallurgy establishes 3D models which enable NPV optimisation and effective orebody management, while minimising technical and operational risk to ultimately provide more resilient operations

- Critically, through spatial identification of variability, it allows the development of strategies to mitigate the risks related to variability (e.g., collect additional data, revise the mine plan, adapt or change the process strategy, or engineer flexibility into the system)
- To achieve these goals, development of innovative technologies and approaches along the entire mine value chain are being established
- Geometallurgy has been shown to intensify collaboration among operational stakeholders, creating an environment for sharing orebody knowledge, leading to the integration of such data and knowledge into mine planning and scheduling
- Companies that embrace the geometallurgical approach will benefit from increased net present value and shareholder value

Dominy et al. (2018)

Geometallurgy Matrix concept

Geometallurgy Matrix concept

For mine waste characterisation a geometallurgical matrix approach could be readily adopted to derisk projects and improve longterm financial outcomes

Representative sampling and capturing heterogeneity is a key issue- this helps overcome it

Requires the embedding of geoenvironmental proxy tests at the earliest LOM stages (i.e., Small-scale, exploration/prefeasibility) simple, low-cost

The (enviro)geometallurgy tool kit

- Challenges encountered when collecting 'representative' geoenvironmental samples at early life-of-mine stages
- Increasing ore deposit knowledge will assist with static and kinetic testing sample selection
- Hyperspectral data measuring VNIR and SWIR active minerals (e.g., Corescan) and TIR (e.g., HyLogger)
- Corescan: ~2,000 m can be collected per day
- Value-add opportunity by perform geoenvironmental domaining to support waste forecasting
- Identify potentially acid forming, non-acid forming and neutralising domains to enable waste management through early forecasting of geoenvironmental characteristics

Туре	Silicate Structure	Mineral Group	Example	VNIR Response	SWIR Response	TIR Response
Silicates	Inosilicates	Amphibole	Actinolite	Non-diagnostic	Good	Good
		Pyroxene	Diopside	Good	Moderate	Good
	Cyclosilicates	Tourmaline	Dravite	Non-diagnostic	Good	Moderate
	Neosilicates	Garnet	Grossular	Moderate	Non-diagnostic	Good
		Olivine	Foresterite	Good	Non-diagnostic	Good
	Sorosilicates	Epidote	Clinozoisite	Non-diagnostic	Good	Good
	Phyllosilicates	Mica	Muscovite	Non-diagnostic	Good	Moderate
		Chlorite	Chlinochlore	Non-diagnostic	Good	Moderate
		Clay minerals	Illite	Non-diagnostic	Good	Moderate
			Kaolinite	Non-diagnostic	Good	Moderate
	Tectosilicates	Feldspar	Orthoclase	Non-diagnostic	Non-diagnostic	Good
			Albite	Non-diagnostic	Non-diagnostic	Good
		Silica	Quartz	Non-diagnostic	Non-diagnostic	Good
Non-silicates	Carbonates	Calcite	Calcite	Non-diagnostic	Good	Good
		Dolomite	Dolomite	Non-diagnostic	Good	Good
	Hydroxides		Gibbsite	Non-diagnostic	Good	Moderate
	Sulfates	Alunite	Alunite	Moderate	Good	Moderate
			Gypsum	Non-diagnostic	Good	Good
	Borates		Borax	Non-diagnostic	Good	Uncertain
	Halides	Chlorides	Halite	Non-diagnostic	Moderate	Uncertain
	Phosphates	Apatite	Apatite	Moderate	Moderate	Good
	Oxides	Hematite	Hematite	Good	Non-diagnostic	Non-diagnostic
		Spinel	Chromite	Non-diagnostic	Non-diagnostic	Non-diagnostic
	Sulfides		Pyrite	Non-diagnostic	Non-diagnostic	Non-diagnostic

Linton et al. (2018)

corescan

Jackson et al. (2018)

corescan

First pass GDI (V2) value risk assessment with sulfides identified defines 5 risk grade classification fields

GDI value	GDI risk grade	Description of geoenvironmental characteristics
- 35,000 to -900	Extreme risk	Dominance of acid forming minerals. Sulfides identified as first
-900 to 0	-900 to 0 High risk Sulfides common. Sulfides identified a < 75 %. No primary neutralise	
0 to 10,000	Potential risk	Dominated by silica/quartz, sericite, chlorite. Few sulfides present, minor primary neutralisers (AP≠NP). Some gypsum present.
10,000 to 40,000	Low risk	Carbonate abundance < 50 % (AP <np).< td=""></np).<>
40,000 to 100,000	Very low risk	Carbonate dominates as first Corescan mineral > 50 %. Long term acid neutralising capacity likely (AP< <np).< td=""></np).<>

Sample A: Skarn

Jackson et al. (2018)

Sample B: Skarn

Sample C: Potassic Zone

Not all are new, but not routinely applied for geoenvironmental characterisation

Integration of results provides the best quality information to feed into the geometallurgical matrix

Parbhakar-Fox et al. (2011; 2018)

Parbhakar-Fox et al. (2015)

Parbhakar-Fox et al. (2015)

Automated mineralogy

Application in predictive ARD characterisation testwork and tailings characterisation

Commonly used techniques do not allow for low-cost high volume analysis- can XMOD be used?

Automated mineralogy

Data mining and machine learning

Opportunity to enhance waste domaining e.g., using Ca and Mg from assay (Jackson et al., 2019) Extract more information from existing data sets e.g., mineralogy and texture (Cracknell et al., 2018)

Calculate mineralogy using assay data (e.g., Berry et al., 2015; Beavis et al. 2017; Howard et al., 2019)

Data mining and machine learning

'Next gen' technologies

X-ray tomography + XRF

Orexplore core scanning – structural features, ore and gangue phase morphology (200 µm voxel resolution)

Sulphide distribution -Sunrise Dam Pyrite – Rio Blanco tourmaline breccia Cu deposit

3D A-ARDI assessments

Minalyzer CS ruScar

Mine waste: Ore bodies of the future

resources Tin and gold from historic tailings

New cobalt

Zinc from slag

New indium resources?

Mine waste: Ore bodies of the future

Parbhakar-Fox et al. (2018): https://www.mdpi.com/2075-163X/8/10/454

THE UNIVERSITY OF QUEENSLAND

Mine waste: Ore bodies of the future

Additional uses of geometallurgy data and tools

Forecast the potential for future mine wastes to fix atmospheric CO₂ (using TIR data): Develop GHG consumption index

Identify 'soft' zones based on classified mineralogy: Predictive dust characterisation protocol

Spent heap leach materials: identify and characterise post-leach mineralogy (e.g., alunite-group)

'Enviro' opportunities in geometallurgy

"Transform how explorers and miners plan and predict mining and environmental activities, by providing new tools to guide these activities from the initial discovery through to end of mine life"

Mineralogical & chemical data analysis to predict AMD characteristics

'Next gen' technologies and new chemical testing Sensor-based waste assessments during operational stages

Tailings 'fingerprinting' during deposition

Characterisation of historic mine sites and waste to determine reuse

New assessment tools and processing approaches

Thank you

Sustainable Minerals Institute University Experimental Mine 40 Isles Road, Indooroopilly, QLD 4068

+61 7 3365 5977 M+61 400 850831
<u>a.parbhakarfox@uq.edu.au</u>

