

# DMQ Wrap-up – May 2017



**Prospectivity Analysis** 

Geologically Constrained Gravity Inversion towards a new granite architecture

J Donohue UQ, Queensland 16<sup>th</sup> May, 2017



- 1. A Primer
  - Geophysical 3D Inversion
  - The Ambiguity problem
  - Constrained Inversion
- 2. The VPmg advantage
- 3. Regional Scale Apparent Density Model
- 4. Defining Granite Morphology from Regional Gravity Data
  - applying geological constraints simply
  - density values
  - (convoluted) path to a new granite model
- 5. Summary









## **3D Geophys Inversion – A primer**



#### Some grav/mag data



#### **3D Discretization**

Iteratively calc a model that matches the obs data







SMIBRC WH Bryan Mining & Geology Research Centre





**The Ambiguity Problem – A primer** 

How sensitive the data is to the shape of a contact/boundary <u>depends on the density contrast</u>



Higher the contrast, -> the less volume of mass required









### **Constrained Inversion – A primer**

#### Reducing the ambiguity problem – constrained inversion





SIVII BRC WH Bryan Mining & Geology Research Centre





### **Constrained Inversion – A primer**

#### A magnetic example.....

### + Constraints

Layer model + cover thickness + susceptibility values

### Aeromag data

### Unconstrained





### **Constrained Model**









## The VPmg Advantage







SMIBRC WH Bryan Mining & Geology Research Centre





7

# The VPmg (Vertical Prism mag grav) Advantage



### Deforming (adaptive) mesh

- Vertical rectangular prisms
- Internal horizontal contacts -> divide prism into cells
- Cells boundaries can move up/down, prism boundaries are fixed



#### Advantages:

- Detail in geological model retained, especially thin units
- Surfaces, (topo), represented more accurately
- Fewer cells -> faster run times



SIVII BRC WH Bryan Mining & Geology Research Centr





# The VPmg Advantage

| Property Table (Regional model |               |         |      |      | Geol Unit Property Table |         |           |        |
|--------------------------------|---------------|---------|------|------|--------------------------|---------|-----------|--------|
|                                | Unit          | Density | Min  | Max  | Hetero                   | Weights | Cell Size | Colour |
| 1                              | Unit 1        | 2.2     | 0.00 | 0.00 |                          | -       | -         |        |
| 2                              | Unit 2        | 2.7     | 0.00 | 0.00 |                          | -       | -         |        |
| 3                              | Unit 3        | 3.0     | 0.00 | 0.00 |                          | -       | -         |        |
| 4                              | Unit 4        | 2.6     | 0.00 | 0.00 |                          | -       | -         |        |
| 5                              | Unit 5        | 2.55    | 0.00 | 0.00 |                          | -       | -         |        |
| ▶ 6                            | VPmg basement | 2.67    | 0.00 | 0.00 |                          | -       | -         |        |



#### Advantages:

- Upper & lower bounds imposed phys properties
- Control which units actively change during inversion
- Geol contacts can be fixed, bounded or free
- Inversion operates directly on geological model



SIVII BRC WH Bryan Mining & Geology Research Centre





# The VPmg Advantage

Three VPmg inversion styles:

1) Homogeneous property – Physical property (dens, sus) of geological unit changes

#### 2) Contact geometry - Shape of geological unit changes

3) Heterogeneous property – physical property within geological unit changes

......while maintaining sharp geological contacts









### **Development of the Apparent Density Model**

GA Gravity & gravity stns











### **Development of the Apparent Density Model**





#### App Density & granite O/C











### 'Extent' of Granite

### App Density & granite O/C



# **Granite Geometry?**

Geol constraints had to be easy to deal with!

"layered" constraining input models promising......





GIS - Interrogate solid geology at VPmg prisms as 'Cover', 'Prot' or 'Granite'
Manipulate GIS output in Excel to generate VPmg input model









# **VPmg DENSITY MODEL**



#### VPmg Input Model @ 120m RL



SMIBRC WH Bryan Mining & Geology Research Centre





#### **Spatial limits of VPmg model**



15

### Assigning Density Contrasts to the Vpmg Model

How sensitive the data is to the shape of a contact/boundary depends on the density contrast.

Final ('high') density <u>contrast</u> used......

|               | LOW  |          | MEDIUM |          | HIGH              |
|---------------|------|----------|--------|----------|-------------------|
| b/g           | 2.67 | contrast | 2.67   | contrast | 2.67 contrast     |
| 'Cover'       | 2.45 | -0.22    | 2.45   | -0.22    | <b>2.45</b> +0.22 |
| 'Cover LST'   |      |          |        |          | <b>2.54</b> 0.13  |
| 'Granite'     | 2.61 | -0.06    | 2.61   | -0.06    | <b>2.59</b> -0.08 |
| 'Proterozoic' | 2.73 | +0.06    | 2.79   | +0.12    | <b>2.78</b> +0.11 |



SMIBRC VH Bryan Mining & Geology Research Centre





### Assigning Density Contrasts to the Vpmg Model





Chinova DDH Density data



## Assigning Density Contrasts to the Vpmg Model

Mira Mt Dore Study: Prot<sub>avg</sub> - Granite Density Contrast = +0.17

DMQ: Prot<sub>avg</sub> - Granite Density Contrast = +0.19 (higher contrast -> less mass)

Final ('high') density <u>contrast</u> used......

|                    | LOW  |          | MEDIUM |          | нісн |          |
|--------------------|------|----------|--------|----------|------|----------|
| b/g                | 2.67 | contrast | 2.67   | contrast | 2.67 | contrast |
| 'Cover'            | 2.45 | -0.22    | 2.45   | -0.22    | 2.45 | -0.22    |
| <b>'Cover LST'</b> |      |          |        |          | 2.54 | -0.13    |
| 'Granite'          | 2.61 | -0.06    | 2.61   | -0.06    | 2.59 | -0.08    |
| 'Proterozoic'      | 2.73 | +0.06    | 2.79   | +0.12    | 2.78 | +0.11    |



SIVII BRC WH Bryan Mining & Geology Research Centr





# Investigating granite thickness (via G Inv)







#### Thickness of granite (km)





SIVII BRC WH Bryan Mining & Geology Research Centre





# Investigating granite thickness (via G Inv)



### Not that useful for defining granite morphology......



WH Bryan Mining & Geology Research Cer





# **Generating 'Base-of-granite' Domains from granite thickness**





# 'Base-of-granite' Domain Geometry Inversions

Starting model



- 1) Added Quartzite unit (low density zones that are not granite)
- 2) Top of granite set @ 0.5 x depth of granite base
- 3) Top-of-Ganite Base-of-Prot interface allowed to change
- 4) Allowed fixed base-of-granite below outcrop areas to change also





MH Bryan Mining & Geology Research Centr





# Problem with O/C in 'Base of granite' domain models.....





Geometry Inv can't adjust/smooth the vertical density contrast at surface



WH Bryan Mining & Geology Research Centre





23

# Develop the 'Grow' granite upwards option



# Step change in getting useable models.....

- Domained input model to granite 'mid-depths',
- Granite layer (& low density Qtz ) set to 0m thick
- Two step procedure

1) Address poor misfits beyond AOI via Heterogeneous Inversion of Vpmg Basement





SMIBRC WH Bryan Mining & Geology Research Centre





# Step change in getting useable models.....

2) Invoke growing of granite volumes from granite unit 0m thick via Geometry Inversion (+ magnify adjustments made to shallow interfaces)





WH Bryan Mining & Geology Research Centre





# After many refinements.....





Depth to top of Granite (0 - 3.2 km)



App Density

SMIBRC WH Bryan Mining & Geology Research Centre





# After many refinements.....







SMIBRC



## The final granite geometry.....





SMIBRC WH Bryan Mining & Geology Research Centre





## Summary

VPmg regional scale App. density model suggests more sub-surface granite than previously acknowledged

Close spatial relationship between min occ. and margins/shoulders of granites in the App. Density model

Geological constraints simplified to a three unit density model; Granite – Prot – Quartzite, +/- Cover

Determine potential granite thicknesses via Geometry Inversion of gravity data

Domain the 3D volume according to an <u>interpreted</u> depth of 'mid-granite level'

Perturb a 0m thick granite layer via geometry inversion to match the gravity data (while honouring outcrop)







SMIBRC WH Bryan Mining & Geology Research Cent





# Geophysics

Some text





SMIBRC WH Bryan Mining & Geology Research Centre



